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An approximate solution, more general than that in [1], has been obtained for heat transfer from a disc 
with radial flow of coolant from center to periphery. The theory is compared with experimental data. 

This paper is devoted to the problem studied in [1], namely, flow of a cooling agent from axis to periphery in the 
gap between a disc and its housing in the absence of an ini t ia l  swirl. Attention is restricted to the part of the channel in 

which core flow exists, i . e . ,  where the sum of the boundary-layer thicknesses at disc and housing is less than the gap 

width, or in the extreme case equal to the gap width at the end section. Then the circumferential  component of the 
core flow velocity will be zero by virtue of the potential nature of the flow and the specified condition of zero swirl at 

the gap inlet .  

The profiles of the circumferential  and radial velocity components in the turbulent boundary layer at the disc may 

be written in the form: 
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The profiles satisfy the boundary conditions: z = 0, V~o = rw, V r = 0; z = 6, V~o = 0, V r = Vr0. 

For large flows, according to the measurements of [2], the radial velocity component profile is convex, resem- 

bling that in a tube. This case, for which cwr << Vr0, was examined by the author in [1]. At small flows, one would 

expect a radial velocity profile near the disc of the type obtained for flow on a freely rotating disc [3], or on a disc ro- 

tating in a housing without mass flow [4, 5, 6]. This is allowed for in that, when Vr0 -* 0, the profiles (1) coincide 
with the profiles V~ and V r adopted by von Karman [3] for a freely rotating disc. In accordance with the solution of [3], 

and in sufficiently good agreement with the experimental data of [7], c will be taken to be equal to 0.162. A similar 

radial velocity component profile was used in [8]. 

Inserting (1) in the boundary layer momentum equation 

( ) d 

and taking the same friction stresses as for a plate, we have 

(2) 
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Then the boundary layer thickness may be determined from 

d & 0,0681 cx 4 + 0 ,0972- : . -  = 
dx 
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i7) 
The integral of this equation with ini t ia l  conditions r = r0, 6 = 0, has the form 

(3) 

(4) 
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Combining (3) and (5), the dimensionless friction stress on the disc is: 

% 1 2 0.375 [C 9(r-) 2' --'-- 0"0268 X"/5[ 1 "J- (' -J- K-K~) ] ~ -'ff K---~- ~ ' 1"428'~ ,/Ree'2a~ 
-- h 
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Using (5), we can also determine the l imit ing value of Re L, up to which profiles (1) are appl icable .  It is known that 
the 1/7 power law applies to flow on a plate if Re = w6/v <- 10 5. Assuming w = car, and defining 6 according to (5), 
we have 

Re L ~< 4 ,3 .106 xa.25 (cKox ~ + 1.428)1.25 
1 25 (7) J(v" 

The local heat  transfer coefficient  may be determined by means of the Reynolds analogy.  In the case dealt  with here, 
the relationship between the dimensionless coefficients of heat transfer and friction is given by 

% ~ r {8) 
Nu L = Re L, Nu  = - -  

p (r 0,)~ ~, ' 

if the temperature  distribution over the disc radius obeys the quadratic law t d - to = kr 2 and Pr = i [8, I ] .  
taneous solution of (6) and (8) gives 

Nu t = 0,0268 Re~ 

AL[R'v,,., x )  = [c + (1 + 1/Kox2)2]~ + 1,428/Kox~)~ l'l~ 
a 0 , 2  

The s imul-  
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The average value of the Nusselt number is, by definition, 

R 
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Performing the integration,  we have 

Nu = 0,134 Re~ (Ko, X), 
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When c = 0, and I / K v  x2 << I,  we have, from (9) and (10), 

Re~ 'Sx~ Nu o Re~ _ 1)o,8 
Nu~ 0.2 5,25 , = 0.038 (12) 0 ' 0 4 0 ~  v'" (x - -  1) 0.2 K ~ 1 7 6  r  1) 

Analogous formulas were obtained in [1]. However, the coefficients in the formulas of [1], where an al lowance 

was made for the difference between the average and maximum values of V r, are 4% higher.  

Graphs of the functions AL(K v, x), A(K v, X) are given in Fig.  1. In addition, values of the correction function 
e = Nu/Nu ~ are given in Fig. 2, for convenience of comparison with exper imental  data and evaluat ion of the region of 

appl ica t ion  of formulas of type (12) in terms of the parameters K v and X. It may be seen from Fig.  2 that e is close to 

unity in the region of large X and Kv in the  range 0 . 5 - 2 . 0 .  

It is of interest to compare approximations (11) with exper imenta l  data.  
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Fig.  1. Graphs of the  functions AL(K v, x), A(K v, X): 

1 -  K v = 0 . 5 ,  2 - - 1 ,  3 - -  9, 4 -  6, 5 - - 1 0 ,  6 - -  o 

Results are  g iven  in [9] of measurements  of the  average  heat  transfer coe f f i c i en t  for a disc rotat ing in a t h e r m a l l y  

insulated housing with a radia l  f low. For a disc 45 m m  thick, over  which the  t empera tu re  distr ibut ion was quadrat ic ,  

the expe r imen t a l  data f i t ted  the  gene ra l i zed  re la t ion  (Pr = 0 .72) :  

N u  = 0.0346 Re~ SKT~ - ~  (s/R) ~176 (13) 

In the exper iments  the  independent  var iables  were  var ied  within the  l imi ts  5 �9 l0  s -< Re -- 4 �9 106; 0 .6  <- K v --- 

-< %0;  2 .15  - X _5.< 2 .7 ;  0 .016 - s/R -< 0 .065 ,  Accord ing  to (5), the  m a x i m u m  boundary - l aye r  thickness at the  disc 

is then N 10 ram,  whi le  the boundary- laye r  thickness at the  housing, computed  from the  m o m e n t u m  equat ion  in the  

radia l  d i rec t ion ,  exceed,; 20 ram.  Therefore ,  in making  the  comparison with the  t h e o r e t i c a l  re la t ion  (11), in order to 

use the  assumption of inviscid  core flow, s in (13) is taken  to be  30 ram.  Then,  for R = 807.5 ram,  we have  

N u  = 0 , 0 3 0 3  Re0.8KT0-1X - ~  

We note  that  the  exponents of K v and X in (13) were de te rmined  from the  

results of two series of tests, in which one of these parameters  was kept f ixed .  

Thus the  exponent  of K v was de te rmined  from exper iments ,  in which K v was 

var ied  over  the range 0 . 6 - 7 . 0  w i t h X  = 2 . 7  throughout,  whi le  the  exponent  of 

X was de te rmined  with K v = 2 .0  throughout,  X being var ied  over the  range 

2 . 1 8 - 2 . 7  (two points).  Approx imat ing  the  graphs of Fig .  2 by means of a pow- 

er law, we h a v e  

s = 1 , 0 1 5 K ~  ~ (15) 

The  error in the  approx ima t ion  for X = 2 .7 ;  0 .9  -<-< K v --< 7 is 2%, and for K v = 

= 2 . 0 ,  2 -< X -  S i t  is 0 . 6 % .  In the  quadr i la te ra l  2 - -  X -<- 3, 0 .9  -< K v -< 

< '7,0, the  m a x i m u m  error reaches 5% (in the  region x = 2, K v = 0 .9 ) .  

Combin ing  (12) and (15), and taking into account  the  in f luence  of Pr 

number  by in t roducing the  factor  Pr ~  as for a f ree ly  rota t ing disc [8], we have  

(14) 

N u  = 0 . 0 3 1 8  Re~176176 (16) 

In this case in (12) we put (X 5"2s - 1 ) ~ 1 7 6  4 - 1 )  -1 ~ X - 0 " 4  

The  discrepancy be tween  the  ca l cu l a t ed  and e x p e r i m e n t a l  re la t ions (14) and 

(16), t ak ing  into account  the  error in approx imat ing  to e, does not exceed  10%. 

Analysis of the  graphs in Figs.  I and 2 shows that ,  in genera l ,  t he  exponents  of K v and X wil l  vary .  

ing cases of K v + 0, Kv ~ ~' when x 4 >> 1, we have ,  f rom (11) 

Fig .  2. Funct ion  e (K v, x): 

I - K v =  10, 2 - 6, 3 -  3, 

4 -  2, 5 -  1, 8 -  0 .5  

In the  l i m i t -  

0 . 0 5 0  R e ~ 1 7 6  16 ( 2 ~ s ~ )  ~  N u  = = 0 . 0 5 0  , N u  = 0 . 0 2 3 R e  ~ 

( the last formula  is the  same  as the solut ion obta ined  in [7] for a f ree ly  ro ta t ing d isc . )  Thus the  exponent  of K v wil l  

vary from - - 0 . 8  to 0 over  a wide range  of va r i a t ion  in f low.  This has been conf i rmed  by mass transfer tests on a disc 

with radia l  f low [10]o 

For a sma l l  f low of coolan t  ( la rge  Kv), there  is a rapid growth in the  bounda ry - l aye r  thickness at disc and housing,  

There fore ,  beg inn ing  at the  sec t ion  where the  reg ion  of viscous dis turbance becomes  equal  to the  gap width,  the  hea t  

37 



transfer coefficient should be calculated by the method of [11], which assumes that the boundary layers at disc and hous- 
ing meet .  

In conclusion, it should be noted that, in the case of arbitrary temperature distribution over the radius of the disc, 

the formulas for the local and average heat transfer coefficients may be obtained on the basis of the particular solution 

examined by the method discussed in [12]. The corresponding computations as applied to a disc are given in [1]. 

NOTATION 

Vq~, V r - circumferential  and radial veloci ty  components; r, R - variable and maximum radius of disc; z - axial 

coordinate, normal to surface of disc: r0 - radius of coolant inlet;  Q - v o l u r n e  flow of coolant ;  w - angular velocity of 

disc; s - gap width between disc and housing; 6 - thickness of hydrodynamic boundary layer; rO - circumferential  

friction stress: V 0 - resultant relat ive veloci ty of flow around disc; ~ - angle between V0 and circumferential  direction; 

t o - init ial  temperature of coolant; t d - disc temperature;  Nu L, Nu - local and average Nusselt number; Re L, Re -- 

local and average Reynolds number; x = r/r0, X = R/r0. 
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