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An approximate solution, more general than that in [1], has been obtained for heat transfer from a disc
with radial flow of coolant from center to periphery. The theory is compared with experimental data.

This paper is devoted to the problem studied in [1], namely, flow of a cooling agent from axis to periphery in the
gap between a disc and its housing in the absence of an initial swirl. Attention is restricted to the part of the channel in
which core flow exists, i.e., where the sum of the boundary-layer thicknesses at disc and housing is less than the gap
width, or in the extreme case equal to the gap width at the end section, Then the circumferential component of the
core flow velocity will be zero by virtue of the potential nature of the flow and the specified condition of zero swirl at
the gap inlet,

The profiles of the circumferential and radial velocity components in the turbulent boundary layer at the disc may
be written in the form: '
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The profiles satisfy the boundary conditions: z =0, Vg =1w, Vp =052 =8, Vi =0, Vp =V

For large flows, according to the measurements of [2], the radial velocity component profile is convex, resem-
bling that in a tube. This case, for which cwr « Vigs was examined by the author in [1]. At small flows, one would
expect a radial velocity profile near the disc of the type obtained for flow on a freely rotating disc [3], or on a disc ro-
tating in a housing without mass flow [4, 5, 61, This is allowed for in that, when Vy, > 0, the profiles (1) coincide
with the profiles Vp and 'V, adopted by von Karman [3] for a freely rotating disc. In accordance with the solution of [3],
and in sufficiently good agreement with the experimental data of [T}, ¢ will be taken to be equal to 0.162, A similar
radial velocity component profile was used in [8].

Inserting (1) in the boundary layer momentum equation
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and taking the same friction stresses as for a plate, we have
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Then the boundary layer thickness may be determined from
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The integral of this equation with initial conditions r = g, & = 0, has the form
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Combining (3) and (5), the dimensionless friction stress on the disc is:
<, 1 \27]0.375 1.428\0.25
— e = 0.0268x05] 14 (¢ c / Re0-20.2, 6
o (rop [+ () | (57 L ©

Using (5), we can also determine the limiting value of Rey, up to which profiles (1) are applicable. It is known that

the 1/7 power law applies to flow on a plate if Re = wé/v = 10°. Assuming w = wr, and defining § according to (5),

we have
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The local heat transfer coefficient may be determined by means of the Reynolds analogy. In the case dealt with here,
the relationship between the dimensionless coefficients of heat transfer and friction is given by

ReL< 4,3-108 )

Nu, = N = —- (8)
u = p(m Re u ,

if the temperature distribution over the disc radius obeys the quadratic law tg — tg = kr? and Pr = 1 [8, 1], The simul-
taneous solution of (6) and (8) gives

Nu, = 0.0268 Red-*4 (K,x),
[C -+ (1 + 1/K0X2)2]0’375 '(C + ]v428/KUX2)0'25X1'15
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The average value of the Nusselt number is, by definition,
R
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Performing the integration, we have
. 0.8
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When ¢ = 0, and I/KVX2 « 1, we have, from (9) and (10),
Re0:8;0.65 Re0-8( X525 — 1)6,8
Nup = 0. 040}(0 25 b oz Nu® = 0.038 KozXos(Xs — 1) - (12)

Analogous formulas were obtained in [1}. However, the coefficients in the formulas of [1], where an allowance
was made for the difference between the average and maximum values of V;, are 4% higher.

Graphs of the functions A(Ky, x), A(Ky, X) are given in Fig. 1. In addition, values of the correction function
¢ = Nu/Nu® are given in Fig. 2, for convenience of comparison with experimental data and evaluation of the region of
application of formulas of type (12) in terms of the parameters Ky and X. It may be seen from Fig. 2 that ¢ is close to
unity in the region of large X and Ky in the range 0.5-2.0.

It is of interest to compare approximations (11) with experimental data.
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Fig. 1. Graphs of the functions Ap(Ky, x), A(Ky, X):
1 -Ky=0.5,2~1,3—-3,4-6,5—10, 6 —

Results are given in [9] of measurements of the average heat transfer coefficient for a disc rotating in a thermally
insulated housing with a radial flow. For a disc 45 mm thick, over which the temperature distribution was quadratic,
the experimental data fitted the generalized relation (Pr = 0. 72):

Nu = 0.0346 Re® 8K 01 X—0-3 (5/R)0-06, (13)

In the experiments the independent variables were varied within the limits 5 + 10° <Re =4 » 10% 0.6 =< Ky =
=7.0; 2,15 =X =2.7; 0.016 = s/R = 0.065, According to (5), the maximum boundary-layer thickness at the disc
is then ~ 10 mm, while the boundary-layer thickness at the housing, computed from the momentum equation in the
radial direction, exceeds 20 mm. Therefore, in making the comparison with the theoretical relation (11), in order to
use the assumption of inviscid core flow, s in (18) is taken to be 30 mm. Then, for R = 307.5 mm, we have

Nu = 0.0303 Re?-8K-0-1 X—0-3, (14)

We note that the exponents of K, and X in (13) were determined from the

results of two series of tests, in which one of these parameters was kept fixed. €
Thus the exponent of K, was determined from experiments, in which K was
varied over the range 0.6-7.0 with X = 2.7 throughout, while the exponent of %
X was determined with K, = 2.0 throughout, X being varied over the range \
2,15-2.7 (two points). Approximating the graphs of Fig. 2 by means of a pow- /5 //
er law, we have \
e = 1,015K0-1X01, 15 4 =

The error in the approximation for X = 2.7 0.9 = Ky = Tis 2%, and for Ky =

=2.0, 2 =X = 3itis 0.6%. Inthe quadrilateral 2 =X =3, 0.9 = K, = g ><<
= 17,0, the maximum error reaches 5% (in the region x = 2, K, = 0.9), >< A

4
Combining (12) and (15), and taking into account the influence of Pr ey

number by introducing the factor pr"+® as for a freely rotating disc [8], we have
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Nu = 0.0318R K” X ) (16) Fig. 2. Function ¢ (Ky, x):
In this case in (12) we put (x> — 1) 8x 0 6¢xt - 1)t & x 704, 1-X,=10, 2~ 6, 3~ 3,
The discrepancy between the calculated and experimental relations (14) and 4-2,5~—-1, 6—=0,5

(16), taking into account the error in approximating to e, does not exceed 10%.

Analysis of the graphs in Figs. 1 and 2 shows that, in general, the exponents of K, and X will vary. In the limit-
ing cases of K, = 0, Ky —> = when x? > 1, we have, from (11)

0.8
Nu = 0.050 Re?-SK-0-8X1-6 = 0,050 | — ) . Nu = 0,023 Re?5
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(the last formula is the same as the solution obtained in [7] for a freely rotating disc.) Thus the exponent of Ky will
vary from —0.81to 0 over a wide range of variation in flow. This has been confirmed by mass transfer tests on a disc

with radial flow [10].

For a small flow of coolant (large Ky), there is a rapid growth in the boundary-layer thickness at disc and housing.
Therefore, beginning at the section where the region of viscous disturbance becomes equal to the gap width, the heat
37



transfer coefficient should be calculated by the method of [11], which assumes that the boundary layers at disc and hous-
ing meet,

In conclusion, it should be noted that, in the case of arbitrary temperature distribution over the radius of the disc,
the formulas for the local and average heat transfer coefficients may be obtained on the basis of the particular solution
examined by the method discussed in [12]. The corresponding computations as applied to a disc are given in [1].

NOTATION

Vi, Vr — circumferential and radial velocity components; 1, R — variable and maximum radius of disc; z — axial
coordinate, normal to surface of disc; ry — radius of coolant inlet; Q ~ volume flow of coolants w — angular velocity of
disc; s — gap width between disc and housing; & —~ thickness of hydrodynamic boundary layer; 7, — circumferential
friction stress; V¢ — resultant relative velocity of flow around discs 8 — angle between V, and circumferential direction;
ty — initial temperature of coolant; ty — disc temperature; Nuy, Nu ~ local and average Nusselt number; Rey, Re —
local and average Reynolds number; x = r/r5, X = R/rg.
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